If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x-320=0
a = 8; b = -4; c = -320;
Δ = b2-4ac
Δ = -42-4·8·(-320)
Δ = 10256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10256}=\sqrt{16*641}=\sqrt{16}*\sqrt{641}=4\sqrt{641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{641}}{2*8}=\frac{4-4\sqrt{641}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{641}}{2*8}=\frac{4+4\sqrt{641}}{16} $
| 0=1/3x+5 | | x+31=-4 | | -94+3y+6=3(4y-3)-7 | | 32x=64+24x | | (2x=5)(x-3) | | 13=v/2+7 | | -38+9y+6=3(4y-4)-2 | | 2x^2-4x+100=676 | | 1/5x+7=10 | | (7(x-3))/x-4+5/x=-5/x(x-4) | | 8x+16-7x=-15 | | 7x+4=11, | | 4-2(x-3=-14+6 | | x−(x−1/3)−(2x−5/5)+(x+8/6)=7 | | 8x+2+5=9 | | 2(2x)+3x=14 | | P+1=5p+1 | | P+1=5p+2 | | 3x-6|=9| | | 2a-6(a+4)=-4 | | 7(3y+5)=98 | | |8x+2|+5=9 | | 3/4y-5=1/8y | | 0.1x^2+0.2x+0.3=2700 | | -7.4z+8.32=-12.6z | | 6-7x+8+4x+4x-3=2+3(4) | | (3-x)-1=(x-2) | | -19.2+2.4p=1.4p-18.8 | | 9+4i-(9+4i)=0 | | 3(x-2)+8=5x-2 | | 5x+12/6=x/3 | | |3+m|=3 |